Electronic Components Datasheet Search |
|
S8540 Datasheet(PDF) 13 Page - Seiko Instruments Inc |
|
S8540 Datasheet(HTML) 13 Page - Seiko Instruments Inc |
13 / 36 page STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER Rev.4.0_01 S-8540/8541 Series 13 4. Current limit circuit The S-8540/8541 series contains a current limit circuit. The current limit circuit is designed to prevent thermal destruction of external transistors due to overload or magnetic saturation of the coil. The current limit circuit can be enabled by inserting a SENSE resistor (RSENSE) between the external coil and the output pin VOUT, and connecting the node for the SENSE resistor and the coil to the SENSE pin. A current limit comparator in the IC is used to check whether the voltage between the SENSE pin and VOUT pin reaches the current limit detection voltage (VSENSE = 125 mV (typ.) ). The current flowing through the external transistor is limited by turning it off during the left time of the oscillation period after detection. The transistor is turned on again at the next clock and current limit detection resumes. If the overcurrent state still persists, the current limit circuit operates again, and the process is repeated. If the overcurrent state is eliminated, the normal operation resumes. Slight overshoot occurs in the output voltage when the overcurrent state is eliminated. Current limit setting value (ILimit) is calculated by the following formula: ILimit = Rsense mV) 125 ( Vsense = If the change with time of the current flowing through the sense resistor is higher than the response speed of the current limit comparator in the IC, the actual current limit value becomes higher than the ILimit (current limit setting value) calculated by the above formula. When the voltage difference between VIN pin and VOUT pin is large, the actual current limit value increases since the change with time of the current flowing through the sense resistor becomes large. 4. 1 VIN vs. Ipeak in the overcurrent state VIN vs. Ipeak 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2.5 4.0 5.5 7.0 8.5 10.0 VIN (V) (IC: S-8540A33FN, coil: CDRH6D28-100, RSENSE: 100 m Ω) 1.25 A Figure 11 lpeak change by input voltage When the output voltage is approximate 1.0 V or less, the load short-circuit protection does not work, since the current limit circuit does not operate. When the current limit circuit is not used, remove the SENSE resistor and connect the SENSE pin to the VSS or VOUT pin. 5. 100% duty cycle The S-8540/8541 series operates up to the maximum duty cycle of 100%. The switching transistor is kept on continuously to supply current to the load, when the input voltage falls below the preset output voltage value. The output voltage in this case is equal to the subtraction of lowering causes by DC resistance of the coil and on resistance of the switching FET from the input voltage. Even when the duty cycle is 100%, the current limit circuit works when overcurrent flows. |
Similar Part No. - S8540 |
|
Similar Description - S8540 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |