![]() |
Electronic Components Datasheet Search |
|
SC16C2550 Datasheet(PDF) 14 Page - NXP Semiconductors |
|
|
SC16C2550 Datasheet(HTML) 14 Page - NXP Semiconductors |
14 / 46 page ![]() Philips Semiconductors SC16C2550 Dual UART with 16 bytes of transmit and receive FIFOs and IrDA encoder/decoder Product data Rev. 03 — 19 June 2003 14 of 46 9397 750 11621 © Koninklijke Philips Electronics N.V. 2003. All rights reserved. 6.9 DMA operation The SC16C2550 FIFO trigger level provides additional flexibility to the user for block mode operation. LSR[5,6] provide an indication when the transmitter is empty or has an empty location(s). The user can optionally operate the transmit and receive FIFOs in the DMA mode (FCR[3]). When the transmit and receive FIFOs are enabled and the DMA mode is de-activated (DMA Mode 0), the SC16C2550 activates the interrupt output pin for each data transmit or receive operation. When DMA mode is activated (DMA Mode 1), the user takes the advantage of block mode operation by loading or unloading the FIFO in a block sequence determined by the receive trigger level and the transmit FIFO. In this mode, the SC16C2550 sets the TXRDY (or RXRDY) output pin when characters in the transmit FIFO is below 16, or the characters in the receive FIFOs are above the receive trigger level. 6.10 Loop-back mode The internal loop-back capability allows on-board diagnostics. In the loop-back mode, the normal modem interface pins are disconnected and reconfigured for loop-back internally (see Figure 6). MCR[0-3] register bits are used for controlling loop-back diagnostic testing. In the loop-back mode, the transmitter output (TX) and the receiver input (RX) are disconnected from their associated interface pins, and instead are connected together internally. The CTS, DSR, CD, and RI are disconnected from their normal modem control inputs pins, and instead are connected internally to RTS, DTR, MCR[3] (OP2) and MCR[2] (OP1). Loop-back test data is entered into the transmit holding register via the user data bus interface, D0-D7. The transmit UART serializes the data and passes the serial data to the receive UART via the internal loop-back connection. The receive UART converts the serial data back into parallel Table 6: Baud rate generator programming table using a 1.8432 MHz clock Output baud rate Output 16 × clock divisor (decimal) Output 16 × clock divisor (HEX) DLM program value (HEX) DLL program value (HEX) 50 2304 900 09 00 75 1536 600 06 00 110 1047 417 04 17 150 768 300 03 00 300 384 180 01 80 600 192 C0 00 C0 1200 96 60 00 60 2400 48 30 00 30 3600 32 20 00 20 4800 24 18 00 18 7200 16 10 00 10 9600 12 0C 00 0C 19.2 k 6 06 00 06 38.4 k 3 03 00 03 57.6 k 2 02 00 02 115.2 k 1 01 00 01 |
Similar Part No. - SC16C2550 |
|
Similar Description - SC16C2550 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |