Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

SCC68681C1A44 Datasheet(PDF) 8 Page - NXP Semiconductors

Part # SCC68681C1A44
Description  Dual asynchronous receiver/transmitter
Download  29 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  PHILIPS [NXP Semiconductors]
Direct Link  http://www.nxp.com
Logo PHILIPS - NXP Semiconductors

SCC68681C1A44 Datasheet(HTML) 8 Page - NXP Semiconductors

Back Button SCC68681C1A44 Datasheet HTML 4Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 5Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 6Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 7Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 8Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 9Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 10Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 11Page - NXP Semiconductors SCC68681C1A44 Datasheet HTML 12Page - NXP Semiconductors Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 29 page
background image
Philips Semiconductors
Product data
SCC68681
Dual asynchronous receiver/transmitter (DUART)
2004 Apr 06
8
re-asserted (set to ‘0’) automatically. This feature can be used to
prevent an overrun, in the receiver, by connecting the RTSN output
to the CTSN input of the transmitting device.
Receiver Reset and Disable
Receiver disable stops the receiver immediately – data being
assembled if the receiver shift register is lost. Data and status in the
FIFO is preserved and may be read. A re-enable of the receiver after
a disable will cause the receiver to begin assembling characters at the
next start bit detected. A receiver reset will discard the present shift
register data, reset the receiver ready bit (RxRDY), clear the status of
the byte at the top of the FIFO and re-align the FIFO read/write
pointers. This has the appearance of ‘clearing or flushing’ the receiver
FIFO. In fact, the FIFO is NEVER cleared! The data in the FIFO
remains valid until overwritten by another received character. Because
of this, erroneous reading or extra reads of the receiver FIFO will
mis-align the FIFO pointers and result in the reading of previously
read data. A receiver reset will re-align the pointers.
Multidrop Mode
The DUART is equipped with a wake up mode for multidrop
applications. This mode is selected by programming bits MR1A[4:3] or
MR1B[4:3] to ‘11’ for Channels A and B, respectively. In this mode of
operation, a ‘master’ station transmits an address character followed by
data characters for the addressed ‘slave’ station. The slave stations, with
receivers that are normally disabled, examine the received data stream
and ‘wake up’ the CPU (by setting RxRDY) only upon receipt of an
address character. The CPU compares the received address to its
station address and enables the receiver if it wishes to receive the
subsequent data characters. Upon receipt of another address character,
the CPU may disable the receiver to initiate the process again.
A transmitted character consists of a start bit, the programmed
number of data bits, and Address/Data (A/D) bit, and the
programmed number of stop bits. The polarity of the transmitted A/D
bit is selected by the CPU by programming bit MR1A[2]/MR1B[2].
MR1A[2]/MR1B[2] = 0 transmits a zero in the A/D bit position, which
identifies the corresponding data bits as data while
MR1A[2]/MR1B[2] = 1 transmits a one in the A/D bit position, which
identifies the corresponding data bits as an address. The CPU
should program the mode register prior to loading the corresponding
data bits into the THR.
In this mode, the receiver continuously looks at the received data
stream, whether it is enabled or disabled. If disabled, it sets the
RxRDY status bit and loads the character into the RHR FIFO if the
received A/D bit is a one (address tag), but discards the received
character if the received A/D bit is a zero (data tag). If enabled, all
received characters are transferred to the CPU via the RHR. In
either case, the data bits are loaded into the data FIFO while the
A/D bit is loaded into the status FIFO position normally used for
parity error (SRA[5] or SRB[5]). Framing error, overrun error, and
break detect operate normally whether or not the receive is enabled.
PROGRAMMING
The operation of the DUART is programmed by writing control words
into the appropriate registers. Operational feedback is provided via
status registers which can be read by the CPU. The addressing of
the registers is described in Table 1.
The contents of certain control registers are initialized to zero on
RESETN. Care should be exercised if the contents of a register are
changed during operation, since certain changes may cause
operational problems.
For example, changing the number of bits per character while the
transmitter is active may cause the transmission of an incorrect
character. In general, the contents of the MR, the CSR, and the
OPCR should only be changed while the receiver(s) and
transmitter(s) are not enabled, and certain changes to the ACR
should only be made while the C/T is stopped.
Mode registers 1 and 2 of each channel are accessed via
independent auxiliary pointers. The pointer is set to MR1x by RESET
or by issuing a ‘reset pointer’ command via the corresponding
command register. Any read or write of the mode register while the
pointer is at MR1x, switches the pointer to MR2x. The pointer then
remains at MR2x, so that subsequent accesses are always to MR2x
unless the pointer is reset to MR1x as described above.
Mode, command, clock select, and status registers are duplicated
for each channel to provide total independent operation and control.
Refer to Table 2 for register bit descriptions.
Table 1.
SCC68681 Register Addressing
A4
A3
A2
A1
READ (R/WN = 1)
WRITE (R/WN = 0)
0
0
0
0
Mode Register A (MR1A, MR2A)
Mode Register A (MR1A, MR2A)
0
0
0
1
Status Register A (SRA)
Clock Select Register A (CSRA)
0
0
1
0
BRG Test
Command Register A (CRA)
0
0
1
1
Rx Holding Register A (RHRA)
Tx Holding Register A (THRA)
0
1
0
0
Input Port Change Register (IPCR)
Aux. Control Register (ACR)
0
1
0
1
Interrupt Status Register (ISR)
Interrupt Mask Register (IMR)
0
1
1
0
Counter/Timer Upper Value (CTU)
C/T Upper Preset Value (CRUR)
0
1
1
1
Counter/Timer Lower Value (CTL)
C/T Lower Preset Value (CTLR)
1
0
0
0
Mode Register B (MR1B, MR2B)
Mode Register B (MR1B, MR2B)
1
0
0
1
Status Register B (SRB)
Clock Select Register B (CSRB)
1
0
1
0
1
×/16× Test
Command Register B (CRB)
1
0
1
1
Rx Holding Register B (RHRB)
Tx Holding Register B (THRB)
1
1
0
0
Interrupt Vector Register (IVR)
Interrupt Vector Register (IVR)
1
1
0
1
Input Ports IP0 to IP6
Output Port Conf. Register (OPCR)
1
1
1
0
Start Counter Command
Set Output Port Bits Command
1
1
1
1
Stop Counter Command
Reset Output Port Bits Command
* See Table 6 for BRG Test frequencies in this data sheet, and
“Extended baud rates for SCN2681, SCN68681, SCC2691, SCC2692,
SCC68681 and SCC2698B” in application notes elsewhere in this publication


Similar Part No. - SCC68681C1A44

ManufacturerPart #DatasheetDescription
logo
NXP Semiconductors
SCC68692 PHILIPS-SCC68692 Datasheet
193Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC68692C1A44 PHILIPS-SCC68692C1A44 Datasheet
193Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC68692C1F40 PHILIPS-SCC68692C1F40 Datasheet
193Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC68692C1N40 PHILIPS-SCC68692C1N40 Datasheet
193Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC68692E1A44 PHILIPS-SCC68692E1A44 Datasheet
193Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
More results

Similar Description - SCC68681C1A44

ManufacturerPart #DatasheetDescription
logo
Motorola, Inc
MC68681 MOTOROLA-MC68681 Datasheet
964Kb / 35P
   Dual Asynchronous Receiver/Transmitter
logo
NXP Semiconductors
SCN2681T PHILIPS-SCN2681T Datasheet
114Kb / 14P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC2692 PHILIPS-SCC2692 Datasheet
209Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCN2681 PHILIPS-SCN2681 Datasheet
205Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC2681T PHILIPS-SCC2681T Datasheet
108Kb / 15P
   Dual asynchronous receiver/transmitter (DUART)
2004 Apr 06
SCN68681 PHILIPS-SCN68681 Datasheet
187Kb / 28P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC68692 PHILIPS-SCC68692 Datasheet
193Kb / 30P
   Dual asynchronous receiver/transmitter DUART
1998 Sep 04
SCC2681 PHILIPS-SCC2681 Datasheet
204Kb / 29P
   Dual asynchronous receiver/transmitter (DUART)
2004 Apr 06
SC28L202 PHILIPS-SC28L202 Datasheet
531Kb / 77P
   Dual universal asynchronous receiver/transmitter DUART
2000 Feb 10
logo
Exar Corporation
ST162552 EXAR-ST162552 Datasheet
121Kb / 28P
   DUAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com