Electronic Components Datasheet Search |
|
SCC68681 Datasheet(PDF) 18 Page - NXP Semiconductors |
|
|
SCC68681 Datasheet(HTML) 18 Page - NXP Semiconductors |
18 / 29 page Philips Semiconductors Product data SCC68681 Dual asynchronous receiver/transmitter (DUART) 2004 Apr 06 18 Output Port Notes The output ports are controlled from three places: the OPCR register, the OPR register, and the MR registers. The default source of data for the OP[7:0] pins is the OPR register. When the OPR is the source for the OP pins, the pins will drive the complement (inverse) of data in the OPR register. The OPCR register, the MR register, and the Command register control the data source for the OP pins. It is this ‘multi-source’ feature of the OP pins that allows them to give the 485 turn-around, RTS, DMA, interrupt, and various other internal clock signals. The OPCR controls the source of the data for the output ports OP2 through OP7. The data source for output ports OP0 and OP1 is controlled by the MR and CR registers. When the OPR is the source of the data for the output ports, the data at the ports is inverted from that in the OPR register. The content of the OPR register is controlled by the ‘Set and Reset Output Port Bits Commands’. These commands are actually the addresses at 0xE and 0xF, respectively. When these commands are used, action takes place only at the bit locations where ones exist on the data bus. For example, a one in bit location 5 of the data word used with the ‘Set Output Port Bits’ command will result in OPR[5] being set to one. The OP[5] pin would then drive a logical zero (VSS). Similarly, a one in bit position 5 of the data word associated with the ‘Reset Output Ports Bits’ command would set OPR[5] to zero, and hence, the pin OP[5] will drive to a one (VDD). The use of two register locations to control the OPR relieves the software from the burden of keeping a copy of the OPR settings, and thus facilitates a bit type manipulation of the individual bits. This is the same reasoning used in the lower four bits of the command register where the Rx and Tx enabling is controlled. The CTS, RTS, CTS Enable Tx signals CTS (Clear To Send) is usually meant to be a signal to the transmitter meaning that it may transmit data to the receiver. The CTS input is on pin MPI. The CTS signal is active LOW; thus, it is called CTS. RTS is usually meant to be a signal from the receiver indicating that the receiver is ready to receive data. It is also active LOW and is, thus, called RTSN. RTSN is on pin MP0. A receiver’s RTS output will usually be connected to the CTS input of the associated transmitter. Therefore, one could say that RTS and CTS are different ends of the same wire! MR2(4) is the bit that allows the transmitter to be controlled by the CTS pin (MPI). When this bit is set to one AND the CTS input is driven HIGH, the transmitter will stop sending data at the end of the present character being serialized. It is usually the RTS output of the receiver that will be connected to the transmitter’s CTS input. The receiver will set RTS HIGH when the receiver FIFO is full AND the start bit of the fourth character is sensed. Transmission then stops with four valid characters in the receiver. When MR2(4) is set to one, CTSN must be at zero for the transmitter to operate. If MR2(4) is set to zero, the MP pin will have no effect on the operation of the transmitter. MR1(7) is the bit that allows the receiver to control MP0. When MP0 is controlled by the receiver, the meaning of that pin will be RTS. However, a point of confusion arises in that MP0 may also be controlled by the transmitter. When the transmitter is controlling this pin, its meaning is not RTS at all. It is, rather, that the transmitter has finished sending its last data byte. Programming the MP0 pin to be controlled by the receiver and the transmitter at the same time is allowed, but would usually be incompatible. RTS is expressed at the MP0 pin which is still an output port. Therefore, the state of MP0 should be set LOW for the receiver to generate the proper RTS signal. The logic at the output is basically a NAND of the MP0 bit register and the RTS signal as generated by the receiver. When the RTS flow control is selected via the MR(7) bit the state of the MP0 register is not changed. Terminating the use of ‘Flow Control’ (via the MR registers) will return the MP0 pin to the control of the MP0 register. |
Similar Part No. - SCC68681 |
|
Similar Description - SCC68681 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |