Electronic Components Datasheet Search |
|
HIP6304 Datasheet(PDF) 7 Page - Intersil Corporation |
|
HIP6304 Datasheet(HTML) 7 Page - Intersil Corporation |
7 / 14 page 7 condition by slowly charging the discharged output capacitors. This voltage rise is initiated by an internal DAC that slowly raises the reference voltage to the error amplifier input. The voltage rise is controlled by the oscillator frequency and the DAC within the HIP6304, therefore, the output voltage is effectively regulated as it rises to the final programmed CORE voltage value. For the first 32 PWM switching cycles, the DAC output remains inhibited and the PWM outputs remain three stated. From the 33rd cycle and for another, approximately 150 cycles the PWM output remains low, clamping the lower output MOSFETs to ground, see Figure 3. The time variability is due to the Error Amplifier, Sawtooth Generator and Comparators moving into their active regions. After this short interval, the PWM outputs are enabled and increment the PWM pulse width from zero duty cycle to operational pulse width, thus allowing the output voltage to slowly reach the CORE voltage. The CORE voltage will reach its programmed value before the 2048 cycles, but the PGOOD output will not be initiated until the 2048th PWM switching cycle. The Soft-Start time or delay time, DT = 2048 / FSW. For an oscillator frequency, FSW, of 200kHz, the first 32 cycles or 160 µs, the PWM outputs are held in a three state level as explained above. After this period and a short interval described above, the PWM outputs are initiated and the voltage rises in 10.08ms, for a total delay time DT of 10.24ms. Figure 3 shows the start-up sequence as initiated by a fast rising 5V supply, VCC, applied to the HIP6304. Note the short rise to the three state level in PWM 1 output during first 32 PWM cycles. Figure 4 shows the waveforms when the regulator is operating at 200kHz. Note that the Soft-Start duration is a function of the Channel Frequency as explained previously. Also note the pulses on the COMP terminal. These pulses are the current correction signal feeding into the comparator input (see the Block Diagram on page 2). Figure 5 shows the regulator operating from an ATX supply. In this figure, note the slight rise in PGOOD as the 5V supply rises. The PGOOD output stage is made up of NMOS and PMOS transistors. On the rising VCC, the PMOS device becomes active slightly before the NMOS transistor pulls “down”, generating the slight rise in the PGOOD voltage. Note that Figure 5 shows the 12V gate driver voltage available before the 5V supply to the HIP6304 has reached its threshold level. If conditions were reversed and the 5V supply was to rise first, the start-up sequence would be different. In this case the HIP6303 will sense an over-current condition due to charging the output capacitors. The supply will then restart and go through the normal Soft-Start cycle. . PWM 1 PGOOD VCORE 5V OUTPUT VCC VIN = 12V DELAY TIME FIGURE 3. START-UP OF A SYSTEM OPERATING AT 500kHz PGOOD VCORE 5V V COMP VCC VIN = 12V DELAY TIME FIGURE 4. START-UP A SYSTEM OPERATING AT 200kHz 12V ATX SUPPLY PGOOD 5 V ATX VCORE SUPPLY ATX SUPPLY ACTIVATED BY ATX “PS-ON PIN” FREQUENCY 200kHz VIN = 5V, CORE LOAD CURRENT = 31A FIGURE 5. SUPPLY POWERED BY ATX SUPPLY HIP6304 |
Similar Part No. - HIP6304 |
|
Similar Description - HIP6304 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |