Electronic Components Datasheet Search |
|
AD8145 Datasheet(PDF) 14 Page - Analog Devices |
|
AD8145 Datasheet(HTML) 14 Page - Analog Devices |
14 / 24 page AD8145 Rev. A | Page 14 of 24 THEORY OF OPERATION The AD8145 amplifiers use an architecture called active feedback, which differs from that of conventional op amps. The most obvious differentiating feature is the presence of two separate pairs of differential inputs compared to a conventional op amp’s single pair. Typically, for the active feedback architecture, one of these input pairs is driven by a differential input signal while the other is used for the feedback. This active stage in the feedback path is where the term active feedback is derived. The AD8145 has an internal feedback resistor from each amplifier output to the negative input of its feedback input stage. This limits the possible closed-loop gain configurations for the AD8145. The active feedback architecture offers several advantages over a conventional op amp in several types of applications. Among these are excellent common-mode rejection, wide input common- mode range, and a pair of inputs that are high impedance and completely balanced in a typical application. In addition, while an external feedback network establishes the gain response as in a conventional op amp, its separate path makes it entirely independent of the signal input. This eliminates any interaction between the feedback and input circuits, which traditionally causes problems with CMRR in conventional differential-input op amp circuits. Another advantage of active feedback is the ability to change the polarity of the gain merely by switching the differential inputs. A high input impedance inverting amplifier can therefore be made. Besides high input impedance, a unity-gain inverter with the AD8145 has a noise gain of unity, producing lower output noise and higher bandwidth than op amps that have noise gain equal to 2 for a unity-gain inverter. The two differential input stages of the AD8145 are each transconductance stages that are well matched. These stages convert the respective differential input voltages to internal currents. The currents are then summed and converted to a voltage, which is buffered to drive the output. The compensation capacitor is included in the summing circuit. When the feedback path is closed around the part, the output drives the feedback input to the voltage that causes the internal currents to sum to zero. This occurs when the two differential inputs are equal and opposite; that is, their algebraic sum is zero. In a closed-loop application, a conventional op amp has its differential input voltage driven to near zero under non- transient conditions. The AD8145 generally has differential input voltages at each of its input pairs, even under equilibrium conditions. As a practical consideration, it is necessary to limit the differential input voltage internally with a clamp circuit. Therefore, the input dynamic ranges are limited to approximately 2.5 V (see the Specifications section for more details). For this reason, it is not recommended to reverse the input and feedback stages of the AD8145, even though some normal functionality may be observed under some conditions. |
Similar Part No. - AD8145_15 |
|
Similar Description - AD8145_15 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |