![]() |
Electronic Components Datasheet Search |
|
CSTLS4M19G56-B0 Datasheet(PDF) 19 Page - Murata Manufacturing Co., Ltd. |
|
|
CSTLS4M19G56-B0 Datasheet(HTML) 19 Page - Murata Manufacturing Co., Ltd. |
19 / 32 page ![]() 17 Note • Please read rating and CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc. • This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please review our product specifications or consult the approval sheet for product specifications before ordering. 1. Cautions for Designing Oscillation Circuits As described in Chapter 2, the most common oscillation circuit with CERALOCK® is to replace L of a Colpitts circuit with CERALOCK®. The design of the circuit varies with the application and the IC being used, etc. Although the basic configuration of the circuit is the same as that of a quartz crystal, the difference in mechanical Q results in the difference of the circuit constant. This chapter briefly describes the characteristics of the oscillation circuit and gives some typical examples. It is becoming more common to configure the oscillation circuit with a digital IC, and the simplest way is to use an inverter gate. Fig. 4-1 shows the configuration of a basic oscillation circuit with a C-MOS inverter. INV. 1 works as an inverter amplifier of the oscillation circuit. INV. 2 acts to shape the waveform and also acts as a buffer for the connection of a frequency counter. The feedback resistance Rf provides negative feedback around the inverter in order to put it in the linear region, so the oscillation will start, when power is applied. If the value of Rf is too large, and if the insulation resistance of the input inverter is accidentally decreased, oscillation will stop due to the loss of loop gain. Also, if Rf is too great, noise from other circuits can be introduced into the oscillation circuit. Obviously, if Rf is too small, loop gain will be low. An Rf of 1MΩ is generally used with a ceramic resonator. Damping resistor Rd provides loose coupling between the inverter and the feedback circuit and decreases the loading on the inverter, thus saving energy. In addition, the damping resistor stabilizes the phase of the feedback circuit and provides a means of reducing the gain in the high frequency area, thus preventing the possibility of spurious oscillation. Load capacitance CL1 and CL2 provide the phase lag of 180°. The proper selected value depends on the application, the IC used, and the frequency. 4 Applications of Typical Oscillation Circuits CL1 CL2 X Rd INV.1 IC IC INV.2 VDD Output Fig. 4-1 Basic Oscillation Circuit with C-MOS Inverter IC : 1/6TC4069UBP(TOSHIBA) X : CERALOCK® CL1, CL2 : External Capacitance Rd : Dumping Resistor 4 P17E.pdf 2012.10.31 |
Similar Part No. - CSTLS4M19G56-B0 |
|
Similar Description - CSTLS4M19G56-B0 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |