Electronic Components Datasheet Search |
|
AD586AR-REEL Datasheet(PDF) 10 Page - Analog Devices |
|
|
AD586AR-REEL Datasheet(HTML) 10 Page - Analog Devices |
10 / 16 page AD586 Rev. G | Page 10 of 16 Figure 18 shows the typical output voltage drift for the AD586L and illustrates the test methodology. The box in Figure 18 is bounded on the sides by the operating temperature extremes and on the top and the bottom by the maximum and minimum output voltages measured over the operating temperature range. The slope of the diagonal drawn from the lower left to the upper right corner of the box determines the performance grade of the device. –20 0 20 40 60 80 5.003 5.000 TEMPERATURE ( °C) VMIN VMAX VMAX –VMIN (TMAX –TMIN) × 5 × 10–6 SLOPE TMIN TMAX SLOPE = T.C. = = = 4.3ppm/ °C 5.0027 – 5.0012 (70 °C – 0) × 5 × 10–6 Figure 18. Typical AD586L Temperature Drift Each AD586J, AD586K, and AD586L grade unit is tested at 0°C, 25°C, and 70°C. Each AD586SQ and AD586TQ grade unit is tested at −55°C, +25°C, and +125°C. This approach ensures that the variations of output voltage that occur as the temperature changes within the specified range will be contained within a box whose diagonal has a slope equal to the maximum specified drift. The position of the box on the vertical scale will change from device to device as initial error and the shape of the curve vary. The maximum height of the box for the appropriate tem- perature range and device grade is shown in Table 5. Dupli- cation of these results requires a combination of high accuracy and stable temperature control in a test system. Evaluation of the AD586 will produce a curve similar to that in Figure 18, but output readings could vary depending on the test methods and equipment used. Table 5. Maximum Output Change in mV Maximum Output Change (mV) Device Grade 0°C to 70°C −40°C to +85°C −55°C to +125°C AD586J 8.75 AD586K 5.25 AD586L 1.75 AD586M 0.70 AD586A 9.37 AD586B 3.12 AD586S 18.00 AD586T 9.00 NEGATIVE REFERENCE VOLTAGE FROM AN AD586 The AD586 can be used to provide a precision −5.000 V output, as shown in Figure 19. The VIN pin is tied to at least a 6 V supply, the output pin is grounded, and the AD586 ground pin is con- nected through a resistor, RS, to a −15 V supply. The −5 V output is now taken from the ground pin (Pin 4) instead of VOUT. It is essential to arrange the output load and the supply resistor, RS, so that the net current through the AD586 is between 2.5 mA and 10.0 mA. The temperature characteristics and long-term stability of the device will be essentially the same as that of a unit used in the standard +5 V output configuration. AD586 GND +6V → +30V 2.5mA < –IL < 10mA 10V RS –5V RS VOUT VIN IL –15V 2 4 6 Figure 19. AD586 as a Negative 5 V Reference USING THE AD586 WITH CONVERTERS The AD586 is an ideal reference for a wide variety of 8-, 12-, 14-, and 16-bit ADCs and DACs. Several representative examples are explained in the following sections. |
Similar Part No. - AD586AR-REEL |
|
Similar Description - AD586AR-REEL |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |