Electronic Components Datasheet Search |
|
RV4145 Datasheet(PDF) 4 Page - Fairchild Semiconductor |
|
RV4145 Datasheet(HTML) 4 Page - Fairchild Semiconductor |
4 / 11 page PRODUCT SPECIFICATION RV4145A 4 REV. 1.0.3 3/6/02 Principles of Operation The 26V shunt regulator voltage generated by the string of zener diodes is divided into three reference voltages: 3/4 VS, 1/2 VS, and 1/4 VS. VREF is at 1/2VS and is used as a refer- ence to create an artifical ground of +13V at the op amp non- inverting input. Figure 1 shows a three-wire 120V AC outlet GFI application using an RV4145A. Fault signals from the sense transformer are AC coupled into the input and are amplified according to the following equation: V7 = RSENSE × ISENSE/N Where V7 is the RMS voltage at pin 7 relative to pin 3, RSENSE is the value of the feedback resistor connected from pin 7 to pin 1, ISENSE is the fault current in amps RMS and N is the turns ratio of the transformer. When V7 exceeds plus or minus 7.2V relative to pin 3 the SCR Trigger output will go high and fire the external SCR. The formula for V7 is approximate because it does not include the sense transformer characteristics. Grounded neutral fault detection is accomplished when a short or fault closes a magnetic path between the sense trans- former and the grounded neutral transformer. The resultant AC coupling closes a positive feedback path around the op amp, and therefore the op amp oscillates. When the peaks of the oscillation voltage exceed the SCR trigger comparator thresholds, the SCR output will go high. Shunt Regulator RLINE limits the current into the shunt regulator; 220V applications will require substituting a 47k Ω 2W resistor. In addition to supplying power to the IC, the shunt regulator creates internal reference voltages (see above). Operational Amplifier RSENSE is a feedback resistor that sets gain and therefore sensitivity to normal faults. To adjust RSENSE, follow this procedure: apply the desired fault current (a difference in current of 5mA is the UL 943 standard). Adjust RSENSE upward until the SCR activates. A fixed resistor can be used for RSENSE, since the resultant ±15% variation in sensitivity will meet UL’s 943 4-6mA specification window. The roll-off frequency is greater than the grounded neutral fault oscillation frequency, in order to preserve loop gain for oscillation (which is determined by the inductance of the 200:1 transformer and C4). The senstivity to grounded neutral faults is adjusted by changing the frequency of oscillation. Increasing the fre- quency reduces the sensitivity by reducing the loop gain of the positive feedback circuit. As frequency increases, the signal becomes attenuated and the loop gain decreases. With the values shown the circuit will detect a grounded neutral fault having resistance of 2 Ω or less. The input to the op amp are protected from overvoltage by back-toback diodes. SCR Driver The SCR used must have a high dV/dt rating to ensure that line noise (generated by noisy appliances such as a drill motor) does not falsely trigger the SCR. Also, the SCR must have a gate drive requirement of less than 200µA. CF is a noise filter capacitor that prevents narrow pulses from firing the SCR. The relay solenoid used should have a 3ms or less response time in order to meet the UL 943 timing requirement. Sense Transformers and Cores The sense and grounded neutral transformer cores are usu- ally fabricated using high permeability laminated steel rings. Their single turn primary is created by passing the line and neutral wires through the center of its core. The secondary is usually from 200 to 1500 turns. Magnetic Metals Corporation, Camden, NJ 08101, (609) 964-7842, and Magnetics, 900 E. Butler Road, P.O. Box 391, Butler, PA 16003, (412) 282-8282 are full line suppliers of ring cores and transformers designed specifi- cally for GFI applications. Two-Wire Application Circuit Figure 2 shows the diagram of a 2-wire 120V AC outlet GFI circuit using an RV4145A. This circuit is not designed to detect grounded neutral faults. Thus, the grounded neutral transformer and capacitors C3 and C4 of Figure 1 are not used. |
Similar Part No. - RV4145 |
|
Similar Description - RV4145 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |