Electronic Components Datasheet Search |
|
ATMEGA8515 Datasheet(PDF) 100 Page - ATMEL Corporation |
|
ATMEGA8515 Datasheet(HTML) 100 Page - ATMEL Corporation |
100 / 257 page 100 ATmega8515(L) 2512K–AVR–01/10 Accessing 16-bit Registers The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit access. The same temporary register is shared between all 16-bit registers within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is written by the CPU, the high byte stored in the temporary register, and the low byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as the low byte is read. Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-bit registers does not involve using the temporary register. To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the high byte. The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit access. Note: 1. See “About Code Examples” on page 7. The assembly code example returns the TCNT1 value in the r17:r16 register pair. It is important to notice that accessing 16-bit registers are atomic operations. If an inter- rupt occurs between the two instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when both the main code and the interrupt code update the temporary regis- ter, the main code must disable the interrupts during the 16-bit access. Assembly Code Examples (1) ... ; Set TCNT 1 to 0x01FF ldi r17,0x01 ldi r16,0xFF out TCNT 1H,r17 out TCNT 1L,r16 ; Read TCNT 1 into r17:r16 in r16,TCNT 1L in r17,TCNT 1H ... C Code Examples (1) unsigned int i; ... /* Set TCNT 1 to 0x01FF */ TCNT 1 = 0x1FF; /* Read TCNT 1 into i */ i = TCNT 1; ... |
Similar Part No. - ATMEGA8515_10 |
|
Similar Description - ATMEGA8515_10 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |