Electronic Components Datasheet Search |
|
LT6656AIS6-2.5PBF Datasheet(PDF) 9 Page - Linear Technology |
|
|
LT6656AIS6-2.5PBF Datasheet(HTML) 9 Page - Linear Technology |
9 / 12 page LT6656 6656f Figure 8. 0°C to 70°C Hysteresis applicaTions inForMaTion Figure 9. –40°C to 85°C Hysteresis or the battery is installed backwards. In systems where the output can be held up by a backup battery with the input pulled to ground, the reverse output protection of the LT6656 limits the output current to typically less than 30µA. Should the output be pulled above the input when the LT6656 is biased, the output will typically sink 4mA. The current versus reverse voltage is shown in the Typical Performance Characteristics section. Long-Term Drift Long-term drift cannot be extrapolated from accelerated high temperature testing. This erroneous technique gives drift numbers that are wildly optimistic. A more realistic way to determine long-term drift is to measure it over the time interval of interest. The LT6656 drift data was taken over 100 parts that were soldered into PC boards similar to a real world application. The boards were then placed into a constant temperature oven with TA = 30°C, their outputs scanned regularly and measured with an 8.5 digit DVM. The parts chosen in the Long Term Drift curves in the Typical Performance Characteristics section represent high, low and typical units. Hysteresis Hysteresis on the LT6656 is measured in two steps, for example, from 25°C to –40°C to 25°C, then from 25°C to 85°C to 25°C, for the industrial temperature range. This two-step cycle is repeated several times and the maximum hysteresis from all the partial cycles is noted. Unlike other commonly used methods for specifying hysteresis, this ensures the worst-case hysteresis is included, whether it occurs in the first temperature excursion or the last. Results over both commercial and industrial temperature ranges are shown in Figure 8 and Figure 9. As expected, the parts cycled over the higher temperature range have a higher hysteresis than those cycled over the lower range. Power Dissipation The LT6656 will not exceed the maximum junction tem- perature when operating within its specified temperature range of –40°C to 85°C, maximum input voltage of 18V and specified load current of 5mA. IR Reflow Shift The different expansion and contraction rates of the materials that make up the LT6656 package induce small stresses on the die that can cause the output to shift during IR reflow. Common lead free IR reflow profiles reach over 250°C, considerably more than lead solder profiles. The higherreflowtemperatureoftheleadfreepartsexacerbates the issue of thermal expansion and contraction causing the output shift to generally be greater than with a leaded reflow process. The lead free IR reflow profile used to experimentally measure the output voltage shift in the LT6656-2.5 is shown in Figure 10. Similar results can be expected using a convection reflow oven. Figure 11 shows the change in output voltage that was measured for parts that were HYSTERESIS (ppm) –60 –40 –20 30 25 15 5 20 10 0 6656 F08 60 40 20 0 VIN = 3V CL = 1µF IL = 0 0°C TO 25°C 70°C TO 25°C HYSTERESIS (ppm) –160 –120 –40 –80 20 18 14 12 8 4 16 10 6 2 0 6656 F09 160 120 40 80 0 VIN = 3V CL = 1µF IL = 0 –40°C TO 25°C 85°C TO 25°C |
Similar Part No. - LT6656AIS6-2.5PBF |
|
Similar Description - LT6656AIS6-2.5PBF |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |