![]() |
Electronic Components Datasheet Search |
|
A67P83181 Datasheet(PDF) 2 Page - AMIC Technology |
|
|
A67P83181 Datasheet(HTML) 2 Page - AMIC Technology |
2 / 18 page ![]() A67P83181/A67P73361 Series Preliminary 256K X 18, 128K X 36 LVTTL, Flow-through ZeBL TM SRAM PRELIMINARY (July, 2005, Version 0.0) 2 AMIC Technology, Corp. Features Fast access time: 6.5/7.5/8.5 ns (153, 133, 117 MHz) Zero Bus Latency between READ and WRITE cycles allows 100% bus utilization Signal +2.5V ± 5% power supply Individual Byte Write control capability Clock enable ( CEN) pin to enable clock and suspend operations Clock-controlled and registered address, data and control signals Registered output for pipelined applications Three separate chip enables allow wide range of options for CE control, address pipelining Internally self-timed write cycle Selectable BURST mode (Linear or Interleaved) SLEEP mode (ZZ pin) provided Available in 100 pin LQFP package General Description The AMIC Zero Bus Latency (ZeBL TM) SRAM family employs high-speed, low-power CMOS designs using an advanced CMOS process. The A67P83181, A67P73361 SRAMs integrate a 256K X 18, 128K X 36 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. These SRAMs are optimized for 100 percent bus utilization without the insertion of any wait cycles during Write-Read alternation. The positive edge triggered single clock input (CLK) controls all synchronous inputs passing through the registers. The synchronous inputs include all address, all data inputs, active low chip enable ( CE), two additional chip enables for easy depth expansion (CE2, CE2 ), cycle start input (ADV/ LD ), synchronous clock enable ( CEN ), byte write enables ( BW1 , BW2 , BW3 , BW4 ) and read/write (R/ W ). Asynchronous inputs include the output enable ( OE ), clock (CLK), SLEEP mode (ZZ, tied LOW if unused) and burst mode (MODE). Burst Mode can provide either interleaved or linear operation, burst operation can be initiated by synchronous address Advance/Load (ADV/LD ) pin in Low state. Subsequent burst address can be internally generated by the chip and controlled by the same input pin ADV/LD in High state. Write cycles are internally self-time and synchronous with the rising edge of the clock input and when R/ W is Low. The feature simplified the write interface. Individual Byte enables allow individual bytes to be written. BW1 controls I/Oa pins; BW2 controls I/Ob pins; BW3 controls I/Oc pins; and BW4 controls I/Od pins. Cycle types can only be defined when an address is loaded. The SRAM operates from a +2.5V power supply, and all inputs and outputs are LVTTL-compatible. The device is ideally suited for high bandwidth utilization systems. |
Similar Part No. - A67P83181 |
|
Similar Description - A67P83181 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |