Electronic Components Datasheet Search |
|
IDT70V05L20PFI Datasheet(PDF) 20 Page - Integrated Device Technology |
|
IDT70V05L20PFI Datasheet(HTML) 20 Page - Integrated Device Technology |
20 / 22 page 6.42 IDT70V05S/L High-Speed 8K x 8 Dual-Port Static RAM Military, Industrial and Commercial Temperature Ranges 20 completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from, or accessed, at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non- semaphorelocation. Semaphoresareprotectedagainstsuchambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port SRAM. These devices have an automatic power-down feature controlled by CE, the Dual-Port SRAM enable, and SEM,thesemaphoreenable.TheCE and SEMpins controlon-chippowerdowncircuitrythatpermitstherespectiveporttogo intostandbymodewhennotselected. Thisistheconditionwhichisshown in Truth Table II where CE and SEM are both HIGH. SystemswhichcanbestusetheIDT70V05containmultipleprocessors or controllers and are typically very high-speed systems which are softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom a performance increase offered by the IDT70V05's hardware sema- phores, which provide a lockout mechanism without requiring complex programming. Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT70V05 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture. An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems. How the Semaphore Flags Work The semaphore logic is a set of eight latches which are indepen- dent of the Dual-Port SRAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called “Token Passing Allocation.” In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore’s status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control. The semaphore flags are active low. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch. The eight semaphore flags reside within the IDT70V05 in a separate memory space from the Dual-Port SRAM. This address space is accessed by placing a LOW input on the SEM pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, OE, and R/W) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can beaccessedbyeithersidethroughaddresspinsA0 –A2.Whenaccessing the semaphores, none of the other address pins has any effect. When writing to a semaphore, only data pin D0 is used. If aLOW level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Truth Table V). That semaphorecannowonlybemodifiedbythesideshowingthezero.When a one is written into the same location from the same side, the flag will be settoaoneforbothsides(unlessasemaphorerequestfromtheotherside is pending) and then can be written to by both sides. The fact that the side whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor communications.(Athoroughdiscussionontheuseofthisfeaturefollows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side. When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side’s output registerwhenthatside'ssemaphoreselect( SEM)andoutputenable(OE) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal ( SEM or OE) to go inactive or the output will never change. A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Truth Table V). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written success- fully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles. It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two sema- phore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. Should the other side’s semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side’s request latch. The second side’s flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch. |
Similar Part No. - IDT70V05L20PFI |
|
Similar Description - IDT70V05L20PFI |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |