Electronic Components Datasheet Search |
|
AT49LV1024A Datasheet(PDF) 2 Page - ATMEL Corporation |
|
|
AT49LV1024A Datasheet(HTML) 2 Page - ATMEL Corporation |
2 / 14 page 2 AT49BV/LV1024A 3332B–FLASH–12/03 Block Diagram Device Operation READ: The AT49BV/LV1024A is accessed like an EPROM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high-impedance state whenever CE or OE is high. This dual-line control gives designers flexibility in preventing bus contention. CHIP ERASE: When the boot block programming lockout feature is not enabled, the boot block and the main memory block will erase together from the same Chip Erase command (See Command Definitions table). If the boot block lockout function has been enabled, data in the boot section will not be erased. However, data in the main memory section will be erased. After a chip erase, the device will return to the read mode. MAIN MEMORY ERASE: As an alternative to the chip erase, a main memory block erase can be performed, which will erase all words not located in the boot block region to an FFFFH. Data located in the boot region will not be changed during a main memory block erase. The Main Memory Erase command is a six-bus cycle operation. The address (555H) is latched on the falling edge of the sixth cycle while the 30H data input is latched on the rising edge of WE. The main memory erase starts after the rising edge of WE of the sixth cycle. Please see Main Memory Erase cycle waveforms. The main memory erase operation is internally controlled; it will automatically time to completion. WORD PROGRAMMING: Once the memory array is erased, the device is programmed (to a logic “0”) on a word-by-word basis. Please note that a data “0” cannot be pro- grammed back to a “1”; only erase operations can convert “0”s to “1”s. Programming is accomplished via the internal device command register and is a four-bus cycle opera- tion (please refer to the Command Definitions table). The device will automatically generate the required internal program pulses. The program cycle has addresses latched on the falling edge of WE or CE, whichever occurs last, and the data latched on the rising edge of WE or CE, whichever occurs first. Programming is completed after the specified tBP cycle time. The Data Polling feature may also be used to indicate the end of a program cycle. BOOT BLOCK PROGRAMMING LOCKOUT: The device has one designated block that has a programming lockout feature. This feature prevents programming of data in the designated block once the feature has been enabled. The size of the block is 8K words. This block, referred to as the boot block, can contain secure code that is used to bring up the system. Enabling the lockout feature will allow the boot code to stay in the OE, CE, AND WE LOGIC Y DECODER X DECODER INPUT/OUTPUT BUFFERS DATA LATCH Y-GATING OPTIONAL BOOT BLOCK (8K WORDS) MAIN MEMORY (56K WORDS) OE WE CE ADDRESS INPUTS VCC GND DATA INPUTS/OUTPUTS I/O15 - I/O0 16 2000H 1FFFH 0000H FFFFH |
Similar Part No. - AT49LV1024A |
|
Similar Description - AT49LV1024A |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.COM |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Datasheet Upload | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |